Sensitivity of potential evapotranspiration to changes in climate variables for different climatic zones

Hydrology and Earth System Sciences | Guo et al. [2016]


Understanding the factors that impact on the sensitivity of potential evapotranspiration (PET) to changes in different climate variables is critical to assessing the possible implications of anthropogenic climate change on the catchment water balance. Using global sensitivity analysis, this study assessed the implications of baseline climate conditions on the sensitivity of PET to a large range of plausible changes in temperature (T), relative humidity (RH), solar radiation (Rs) and wind speed (uz). The analysis was conducted at 30 Australian locations representing different climatic zones, using the Penman–Monteith and Priestley–Taylor PET models. Results from both models suggest that the baseline climate can have a substantial impact on overall PET sensitivity. In particular, approximately 2-fold greater changes in PET were observed in cool-climate energy-limited locations compared to other locations in Australia, indicating the potential for elevated water loss as a result of increasing actual evapotranspiration (AET) in these locations. The two PET models consistently indicated temperature to be the most important variable for PET, but showed large differences in the relative importance of the remaining climate variables. In particular, for the Penman–Monteith model wind and relative humidity were the second-most important variable for dry and humid catchments, respectively, whereas for the Priestley–Taylor model solar radiation was the second-most important variable, particularly for warmer catchments. This information can be useful to inform the selection of suitable PET models to estimate future PET for different climate conditions, providing evidence on both the structural plausibility and input uncertainty for the alternative models.

Full text can be found here.


Leave a Reply

Fill in your details below or click an icon to log in: Logo

You are commenting using your account. Log Out / Change )

Twitter picture

You are commenting using your Twitter account. Log Out / Change )

Facebook photo

You are commenting using your Facebook account. Log Out / Change )

Google+ photo

You are commenting using your Google+ account. Log Out / Change )

Connecting to %s