Seasonally Resolved Distributional Trends of North American Temperatures Show Contraction of Winter Variability

Journal of Climate | Rhines et al. [2016]

Abstract

There is considerable interest in determining whether recent changes in the temperature distribution extend beyond simple shifts in the mean. We present a framework based on quantile regression, wherein trends are estimated across percentiles. Pointwise trends from surface station observations are mapped into continuous spatial fields using thin-plate spline regression. This procedure permits for resolving spatial dependence of distributional trends, providing uncertainty estimates that account for spatial covariance and varying station density. We apply the method to seasonal near-surface temperatures between 1979–2014 to unambiguously assess distributional changes in the densely-sampled North American region. We find strong seasonal differences, with summer trends exhibiting significant warming throughout the domain with little distributional dependence, while the spatial distribution of spring and fall trends show a dipole structure. In contrast, the spread between the 95th and 5th percentile in winter has decreased with trends of −0.71 and −0.85 °C/decade respectively for daily maximum and minimum temperature, a contraction that is statistically significant over 84% of the domain. This decrease in variability is dominated by warming of the coldest days, which has outpaced the median trend by approximately a factor of four. Identical analyses using ERA-Interim and NCEP-II yield consistent estimates for winter (though not for other seasons), suggesting that reanalyses can be reliably used for relating winter trends to circulation anomalies. These results are consistent with Arctic-amplified warming being strongest in winter and with the influence of synoptic scale advection on winter temperatures. Maps for all percentiles, seasons, and datasets are provided via an online tool.

Full text can be found here.

 

Advertisements

Leave a Reply

Fill in your details below or click an icon to log in:

WordPress.com Logo

You are commenting using your WordPress.com account. Log Out / Change )

Twitter picture

You are commenting using your Twitter account. Log Out / Change )

Facebook photo

You are commenting using your Facebook account. Log Out / Change )

Google+ photo

You are commenting using your Google+ account. Log Out / Change )

Connecting to %s