Evaluation of soil moisture in CMIP5 simulations over contiguous United States using in situ and satellite observations

Hydrology and Earth System Sciences | Yuan and Quiring [2016]


This study provides a comprehensive evaluation of soil moisture simulations in the Coupled Model Intercomparison Project Phase 5 (CMIP5) extended historical experiment (2003 to 2012). Soil moisture from in situ and satellite sources are used to evaluate CMIP5 simulations in the contiguous United States (CONUS). Both near-surface (0–10 cm) and soil column (0–100 cm) simulations from more than 14 CMIP5 models are evaluated during the warm season (April–September). Multi-model ensemble means and the performance of individual models are assessed at a monthly time scale. Our results indicate that CMIP5 models can reproduce the seasonal variability in soil moisture over CONUS. However, the models tend to overestimate the magnitude of both near-surface and soil-column soil moisture in the western U.S. and underestimate it in the eastern U.S. There are large variations in model performance, especially in the near-surface. There are significant regional and inter-model variations in performance. Results of a regional analysis show that in deeper soil layer, the CMIP5 soil moisture simulations tend to be most skillful in the southern U.S. Based on both the satellite-derived and in situ soil moisture, CESM1, CCSM4 and GFDL-ESM2M perform best in the 0–10 cm soil layer and CESM1, CCSM4, GFDL-ESM2M and HadGEM2-ES perform best in the 0–100 cm soil layer.

Full text can be found here.


Leave a Reply

Fill in your details below or click an icon to log in:

WordPress.com Logo

You are commenting using your WordPress.com account. Log Out /  Change )

Google+ photo

You are commenting using your Google+ account. Log Out /  Change )

Twitter picture

You are commenting using your Twitter account. Log Out /  Change )

Facebook photo

You are commenting using your Facebook account. Log Out /  Change )


Connecting to %s