Featured: Spatio-Temporal Dynamics of Global Drought

Geophysical Research Letters | Herrera-Estrada et al. [2017]

Abstract

Understanding the evolution and physical drivers of drought is critical to informing forecasting efforts. One aspect that has seldom been explored is the joint evolution of droughts in space and time. Most studies fix the reference area and focus on their temporal variability, or study their spatial heterogeneity over fixed durations. This work implements a Lagrangian approach by aggregating contiguous areas under drought into clusters. These clusters become the frame of reference and are tracked as they evolve through space and time. Clusters were identified from soil moisture data from the Climate Forecast System Reanalysis (1979-2009). Evapotranspiration, moisture fluxes, and precipitation were used to explore the relevance of possible mechanisms of drought propagation. While most droughts remain near their origin, the centroid of 10% of clusters traveled at least 1,400-3,100 km, depending on the continent. This approach also revealed that large-scale droughts often lock into further growth and intensification.

Full text can be found here.

 

 

Advertisements

Leave a Reply

Fill in your details below or click an icon to log in:

WordPress.com Logo

You are commenting using your WordPress.com account. Log Out / Change )

Twitter picture

You are commenting using your Twitter account. Log Out / Change )

Facebook photo

You are commenting using your Facebook account. Log Out / Change )

Google+ photo

You are commenting using your Google+ account. Log Out / Change )

Connecting to %s