Global precipitation trends across spatial scales using satellite observations

Bulletin of the American Meteorological Society | Nguyen et al. [2017]


Little dispute surrounds the observed global temperature changes over the past decades (Jones & Moberg, 2003). As a result, there is widespread agreement that a corresponding response in the global hydrologic cycle must exist. However, exactly how such a response manifests remains unsettled. Here we use a unique recently developed long-term satellite-based record to assess changes in precipitation across spatial scales. We show that warm climate regions exhibit decreasing precipitation trends while arid and polar climate regions show increasing trends. At the country scale, precipitation seems to have increased in 96 countries, and decreased in 104. We also explore precipitation changes over 237 global major basins. Our results show opposing trends at different scales, highlighting the importance of spatial scale in trend analysis. Furthermore, while the increasing global temperature trend is apparent in observations, the same cannot be said for the global precipitation trend according to the high-resolution dataset PERSIANN-CDR used in this study.

Full text can be found here.


Leave a Reply

Fill in your details below or click an icon to log in: Logo

You are commenting using your account. Log Out /  Change )

Google+ photo

You are commenting using your Google+ account. Log Out /  Change )

Twitter picture

You are commenting using your Twitter account. Log Out /  Change )

Facebook photo

You are commenting using your Facebook account. Log Out /  Change )

Connecting to %s